

16 e

04/2010



## **Uhing-Products**





Guide System: Catalog GS

Rolling Ring Drives:

Catalog RG/RGK/KI

Non Contact Flange Detecting System: Catalog FA

Linear Drive Nut: Catalog RS

Timing Belt Drive: Catalog AZ



Fast Action Clamping System Uhing-easylock®:













Catalog UE

Smooth Shaft Fastener U-Clip: Catalog UE

Engineering: Catalog EG

Joachim Uhing KG

More about us at: www.uhing.com

GmbH & Co. - the originator

of the Rolling Ring Principle - successful for over 50 years. Our worldwide network of agencies guarantees a reliable service on the spot.

## **Summary of contents**

|                                     | page  |
|-------------------------------------|-------|
| Products and principle of operation | 2     |
| Applicational areas                 | 3     |
| Dimensions and technical details    | 4 - 5 |
| Selection                           | 6     |
| Operational Guide                   | 7     |
| Agencies                            | 8     |

## **Uhing - Linear Drive Nut**

The Actuator for:

- Linear Motion Drives
- Measurement and Inspection Technology
- Materials Handling Systems
- Control Systems
- Medical Engineering





Uhing-Linear Drive Nuts (RS) are non-positive drives which convert the rotation of a plain round shaft into linear motion.

## **Principle of** operation

The effect is achieved by pressing specially crowned Rolling Rings against the shaft and allowing them to roll on the surface of the shaft at an angle which determins their pitch.



## **Applicational areas**



With permission of Zeiss

## **Characteristics**

- Backlash-free
- Resistant to vibrations
- Compact design
- Overload protection
- High-efficiency
- Quiet in operation
- Low maintenance
- Free-movement lever
- Good sealing possibilities
- Linked nuts for higher side thrust
- Left- and right-hand pitch on the same shaft



Setting unit for speed control of ship motors

Ejector unit for contaminated foodstuffs



With permission of Zoller



With permission of DMG Microset GmbH

> freemovement lever





Drive for double sliding doors







## **Dimensions and Technical Details**

## Uhing - Linear Drive Nut Types RS





Special design for open Linear Drive Nuts upon request







The CAD - drawings and technical details are available in the Internet.

## Dimensions

|                                   | Weight |     | Dime | Dimensions for <b>RS</b> Typen (mm)                                     |     |          |    |    |     |               |                     | Technic | al Details                                         |             |                     |                      |       |
|-----------------------------------|--------|-----|------|-------------------------------------------------------------------------|-----|----------|----|----|-----|---------------|---------------------|---------|----------------------------------------------------|-------------|---------------------|----------------------|-------|
| Туре                              | m (kg) | а*  | a1*  | b                                                                       | С   | $d_{h6}$ | е  | f  | g   | $h^{\pm 0.3}$ | i                   | k       | Ι                                                  | q           | F <sub>RS</sub> (N) | M <sub>o</sub> (Ncm) | h(mm) |
| RS3-10-4                          | 0,14   | 47  | 65   | 35                                                                      | 35  | 10       | 30 | 18 | M 4 | 17,3          | M 3                 | 26      | 6                                                  | 5           | 100                 | 1,8                  | 5,0   |
| RS4-10-4                          | 0,18   | 55  | 73   | "                                                                       | ш   | п        | "  | "  | п   | п             | "                   | "       | "                                                  | п           | 200                 | 5,0                  | "     |
| RS4-15-4                          | 0,23   | 62  | 82   | 40                                                                      | 40  | 15       | 26 | 18 | M 4 | 19,6          | M 4                 | 30      | 8                                                  | 5           | 260                 | 5,0                  | 7,5   |
| RS4-20-4                          | 0,55   | 83  | 108  | 52                                                                      | 52  | 20       | 40 | 30 | M 5 | 26            | M 5                 | 40      | 11                                                 | 8           | 420                 | 10,0                 | 10,0  |
| RS4-25-4                          | 0,70   | 85  | 110  | 60                                                                      | 60  | 25       | 40 | 30 | M 5 | 29,4          | M 5                 | 45      | 10                                                 | 9           | 600                 | 20,0                 | 12,5  |
| RS4-35-4                          | 1,55   | 105 | 126  | 80                                                                      | 80  | 35       | 50 | 40 | M 6 | 40            | M 6                 | 60      | 12                                                 | 13          | 900                 | 45,0                 | 17,5  |
| RS4-50-3                          | 2,70   | 120 | 140  | 100                                                                     | 100 | 50       | 50 | 50 | M 8 | 48,8          | -                   | -       | -                                                  | 16          | 1300                | 140,0                | 25,0  |
| RS4-60-3                          | 4,20   | 130 | 156  | 120                                                                     | 120 | 60       | 69 | 62 | M10 | 58,4          | -                   | -       | -                                                  | 15          | 2000                | 200,0                | 30,0  |
| Heavy print:<br>standard versions |        |     |      | *Attention:<br>If wipers are used, dimension a becomes a <sub>1</sub> . |     |          |    |    |     | M             | (N)<br>(Ncm)<br>mm) | = ld    | laximum available<br>Iling torque<br>Iaximum pitch | side thrust |                     |                      |       |





## Features

## F Free-Movement Lever, mechanical

when operated, the nut can be slide freely along the shaft



as above, operated with a pressure of p = 6 bar Attention: Units supplied with **P** have a reduced thrust. Refer to supplier for

details

# s-P

## Adapter

for twist free coupling system



## Wipers

for sealing between nut and shaft (to +70°C) Attention! For units with wipers please note dimension  $a_1$  on page 4.

|--|

## **R** Steady Rollers

Rolls on Linear Drive Nut (in conjunction with a guide bar) prevent the rotation of the nut on the shaft.



Details of other types upon request.

## **Product Survey**

(Type designation chart)

| ()                                       |                         |         |         |                |              |      |      |
|------------------------------------------|-------------------------|---------|---------|----------------|--------------|------|------|
| Product group                            | Uhing Linear Drive Nut  |         |         |                | t            |      |      |
| Type reference                           | RS                      |         |         |                |              |      |      |
| Style (Number of Rolling Rings)          | <b>3</b> o. 4           |         | 3       | or <b>4</b>    |              |      |      |
| Size (Shaft diameter)                    | 10                      | 15      | 20      | 25             | 35           | 50   | 60   |
| Design category                          | 4                       | 4       | 4       | 4              | 4            | 3    | 3    |
| Pitch direction                          | L (= left), R (= right) |         |         |                |              |      |      |
| Pitch max.                               | 0,1 · C                 | ),2 · ( | 0,3 · ( | 0,4 · <b>(</b> | <b>D,5</b> x | shaf | it Ø |
| Available features <sup>1)</sup>         | F, P, F                 | R       |         |                |              |      |      |
| Customer specific features <sup>2)</sup> | Х                       |         |         |                |              |      |      |

Heavy print: standard versions

## 1) Available features

- Free Movement Lever
- F mechanical
- P pneumatical
- R Steady Rollers

## <sup>2</sup>) Customer specific features

- Adapter • Wipers
- Increased protection against corrosion
- Felt rings
  - Specific pitch Grease nipples
  - · Reduced thrust

## **Ordering specifications / Example**

| Type reference                         | RS | 4 - | -25- | - 4 | R | 12.5 | Р | Х |
|----------------------------------------|----|-----|------|-----|---|------|---|---|
| Style                                  |    |     |      |     |   |      |   |   |
| Size (shaft dia.)<br>Separator symbols |    |     |      |     |   |      |   |   |
| Design category                        |    |     |      |     |   |      |   |   |
| Pitch direction                        |    |     |      |     |   |      |   |   |
| Pitch                                  |    |     |      |     |   |      |   |   |
| Available features                     |    |     |      |     |   |      |   |   |
| Customer specific<br>features          |    |     |      |     |   |      |   |   |



## Selection

d(mm)

F<sub>RS</sub>(N)

 $F_{R}(N)$ 

 $F_N(N)$ 

F(N)

If you wish Joachim Uhing KG GmbH & Co. to make a selection for you in respect of your application, please ask for Applications Questionnaire 03e.

| Formulae and<br>related units |                                                                                               |                  |                                                                                           | Md (Ncm)<br>Mo (Ncm)                    | 5                                                                      |
|-------------------------------|-----------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------|
| d(mm)<br>F(N)                 | <ul><li>shaft diameter</li><li>side thrust required</li></ul>                                 | f(mm)<br>g(m/s²) | force of a separator<br>= shaft sag from diagram<br>= acceleration due to gravity         | n(r.p.m.)<br>n <sub>crit</sub> (r.p.m.) | <ul><li>shaft speed</li><li>critical shaft speed</li></ul>             |
| F <sub>RS</sub> (N)           | <ul> <li>side thrust produced by<br/>Linear Drive Nut type RS</li> </ul>                      | 9(               | (9.81 m/s <sup>2</sup> ). Note: for horizontal applications                               | P(kW)<br>t(s)                           | <ul><li>drive power required</li><li>acceleration or braking</li></ul> |
| F <sub>R</sub> (N)            | = force of friction $(F_N \cdot \mu)$<br>only relevant when the<br>associated mass is mounted | h(mm)            | <ul><li>m · g = 0</li><li>= Drive Nut pitch (travel per shaft revolution)</li></ul>       | v(m/sec)                                | time<br>= maximum speed of<br>travel                                   |
|                               | on its own independent<br>carriage                                                            | l(mm)            | <ul> <li>length of shaft between<br/>centre of bearing brackets</li> </ul>                | C(N)                                    | <ul> <li>dynamic loading of<br/>Rolling Rings</li> </ul>               |
| F <sub>N</sub> (N)            | <ul> <li>normal force of total weight<br/>of associated mass and<br/>carriage</li> </ul>      | m(kg)            | <ul> <li>total mass to be moved,<br/>including Drive Nut,<br/>connections etc.</li> </ul> | P <sub>R</sub> (N)                      | <ul> <li>radial loading of<br/>Rolling Rings</li> </ul>                |

1. Side thrust

$$F = 2\left(\frac{m \cdot v}{t} + m \cdot g\right) + F_{R} + F_{Z}$$

A Drive Nut should be selected which has a greater side thrust than the value calculated.

F< F<sub>RS</sub>

Several smaller Drive Nuts can be coupled together if available space so dictates. The total thrust available is the sum of the individual values.

| 2. Shaft speed |                                            |  |  |  |  |  |  |  |
|----------------|--------------------------------------------|--|--|--|--|--|--|--|
|                | $n = \frac{V \cdot 6 \cdot 10^4}{h_{max}}$ |  |  |  |  |  |  |  |
| 2.1.           | Max. shaft speed                           |  |  |  |  |  |  |  |
| RS             | 3-10-4 =10000 min <sup>-1</sup>            |  |  |  |  |  |  |  |
| RS             | $4-15-4 = 8000 \text{ min}^{-1}$           |  |  |  |  |  |  |  |
| RS             | $4-20-4 = 7000 \text{ min}^{-1}$           |  |  |  |  |  |  |  |
| RS             | $4-25-4 = 6000 \text{ min}^{-1}$           |  |  |  |  |  |  |  |
| RS             | $4-35-4 = 4000 \text{ min}^{-1}$           |  |  |  |  |  |  |  |
| RS             | $4-50-3 = 3400 \text{ min}^{-1}$           |  |  |  |  |  |  |  |
| RS             | $4-60-3 = 2500 \text{ min}^{-1}$           |  |  |  |  |  |  |  |

## 2.2 Critical shaft speed

 $n_{crit} = 1,225 \cdot 10^8 \frac{d}{12}$ 

## Note

Depending upon its quality, the shaft can go out of balance at a speed of up to 25 % lower than that specified above.

If it is necessary to go through a critical range in order to reach the operational speed, this can lead to short term shaft vibration. This has no effect on the operation of the Drive Nut.

If the operational speed is in the critical speed range, this can be rectified as follows:

- 1. with a double bearing support at one end, increase factor approx. 1,5.
- 2. with double bearing supports at both ends, increase factor approx. 2,2.

The distance between the bearing support brackets should be at least 2.5 x the diameter of the shaft.

$$M_{d} = \frac{F_{RS} \cdot h}{20 \cdot \pi} + Mo$$

Values for Mo to be taken from the technical detail tables.

## 4. Shaft sag



## 5. Calculation of the operational life of Rolling Rings

| 1. Select C                 | Тур   | C(N)  |
|-----------------------------|-------|-------|
|                             | RS 10 | 4620  |
|                             | RS 15 | 5590  |
|                             | RS 20 | 9360  |
|                             | RS 25 | 11200 |
|                             | RS 35 | 15900 |
|                             | RS 50 | 21600 |
|                             | RS 60 | 29600 |
| 2. Calculate P <sub>R</sub> |       |       |

RS 10 : 
$$P_R = 5 \cdot F_{RS}^*$$
  
RS 15 - 60:  $P_R = 2,5 \cdot F_{RS}$ 

\*F = calculated value of the side thrust according to 1. only if increasing of operational life time of the rolling rings is really necessary. In case of order it is an absolute must to mention.

3. Divide C by P<sub>R</sub>

4. Calculate the required shaft speed

$$n = \frac{v \cdot 6 \cdot 10^4}{h_{max}}$$

5. Determine the operational life in hours from the nomogram

| Example 1                                                  | Example 2                                                      |
|------------------------------------------------------------|----------------------------------------------------------------|
| RS4-35-4R17,5<br>speed 0,8 m/s                             | RS4-15-4R7,5<br>reduced side thrust 150 N<br>speed 0,2 m/s     |
| 1. C = 15900                                               | C = 5590                                                       |
| 2. $P_R = 2,5 \cdot 900 \text{ N} = 2250 \text{ N}$        | $P_R = 2.5 \cdot 150 \text{ N} = 375 \text{ N}$                |
| $3. \frac{C}{P_R} = \frac{15900}{2250} = 7,07$             | $\frac{C}{P_R} = \frac{5590}{375} = 14,9$                      |
| 4. n = $\frac{0.8 \cdot 6 \cdot 10^4}{17.5}$ = 2743 r.p.m. | $n = \frac{0.2 \cdot 6 \cdot 10^4}{7.5} = 1600 \text{ r.p.m.}$ |
| 5. L <sub>10h</sub> = 2200 operating hours                 | $L_{10h}$ = 35000 operating hours                              |

#### Nomogram





#### 1.1. Basic requirements

Uhing Linear Drives should only be used in conjunction with steel shafts manufactured from induction surface hardened, ground and finished bar of the following quality, minimum:

- surface hardness: 50 HRC
- tolerance on diameter: h6
- out of roundness: maximum one half of the diameter variation permitted by ISO tolerance h6
- true running tolerance
   (DIN ISO 1101): ≤ 0,1 mm/m

## **1.2. Uhing - precision shaft** Standard:

Material Cf 53, Mat.-Nr. 1.1213, induction surface hardened, 60-64 HRC

#### Rust resistant:

Material X 40 Cr 13, Mat.-Nr. 1.4034, induction surface hardened, 51-55 HRC

Rust and acid resistant:

Material X 90 CrMoV 18, Mat.-Nr. 1.4112, induction surface hardened, 52-56 HRC

- all ground and superfinished
- surface roughness: mean value (DIN 4768 T.1) R<sub>a</sub>:≤ 0.35 μm
- tolerance on diameter: h6
- out of roundness: maximum one half of the diameter variation permitted by ISO tolerance h6
- true running tolerance (DIN ISO 1101): ≤ 0.1 mm/m

# **1.3. Uhing precision shafts with enhanced true running tolerance** Available in the above styles, but

- true running tolerance

(DIN ISO 1101): ≤0.03 mm/m

#### 1.4. Leading end chamfer

The leading end of the shaft should be chamfered to avoid damage to the Rolling Rings when screwing the unit onto the shaft.



## 2. Pitch

The standard pitch is  $0,5 \times d$ . This can be ordered for RS as either a right- or a left-handed pitch.

Unless otherwise specified, units having a right-handed pitch will be supplied. For RS subsequent alterations to the pitch are possible with units having a design category -4 reference by changing the associated pitch control wedges.

Non-standard pitches 0,1 - 0,2 - 0,3and 0,4 x d are available. In this version reduction of the side thrust is recommended to improve the smooth running.

# 3. Separately carried loads

If Uhing Linear Drive Nuts are used to move separately carried loads, allowance should be made in the coupling to compensate for any misalignment between the drive

shaft and the carriage. The available side thrust will otherwise be affected. If the application so permits, we recommend the use of our twist-free coupling system.



Torque-free coupling system



#### 4. Vertical applications

For vertical applications we advise the use of a directly braked motor so as to avoid the possibility of the shaft rotating backwards and the Drive Nut falling due to the high efficiency of the drive.

Depending upon the application (safety considerations and value of the installation) a reserve of side thrust should be built in (using a second Drive Nut).

With units having a free-movement lever, care must be taken before its operation to ensure that they are unable to drop in an uncontrolled manner - danger of injury!

#### 5. Temperature range

Uhing Linear Drive Nuts are suitable for operation at temperatures from -10°C to +70°C.

Please enquire for other temperatures.

## 6. Maintenance

For the lubrication of the shaft, commercially available **MoS2-free ballbearing greases** can be used, e. g. SKF Alfalub LGMT2, Shell Alvania R2 or G2, Esso Beacon 2, BP Energrease LS2.

Procedure:

Clean the shaft and spread the grease as thinly as possible with a rag. Frequency: Once every ten weeks.

## 7. Symmetry

The maximum difference in pitch for the two directions of travel is 2 %. We therefore recommend the use of positional sensors for positioning applications.

We reserve the right to make technical alterations.

For further information please refer to our Operating Instructions 05e, available on request or in the internet as download:

www.uhing.com





7











